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Central Limit Theorem for 

Parking Models on the Line and Plane 

by Howard J. Weiner 

University of California at Davis and Stanford University* 

1.  Introduction. Three models for random parking (=  packing) of line 

segments on a longer line and correspondingly, squares on a larger 

rectangle are given, where for each model, either the Renyi or the 

Solomon parking method is used. 

The one-dimensional first moment results are given in Solomon (1966), 

(1970), Weiner (1978). 

In the alternating car size model, a car of length a is placed 

uniformly at random along a curb (segment) of length x.  It is considered 

praked there. A second car, of length b is placed uniformly at random 

along -the curb and parked if and only if it does not overlap the a-car. 

This is the Renyi parking mechanism.  In the Solomon parking mechanism, 

a newly-placed car which overlaps an already-parked car is moved the 

shorter distance so as to be immediately adjacent to the overlapped car 

on the curb, and is parked there if and only if it does not now overlap 

yet another parked car, or the boundary of the segment. If a b-car is not 

parked, it is discarded, and another b-car is placed I.I.D. at random as 

the other b-car. If it is parked, then an a-car is placed, and the process 



continues until no further cars can be parked»  If the b-car is not 

parked, again it is discarded and another b-car is placed, and again 

the process continues until no more cars may be parked. This process 

may be similarly defined for the plane for aXa and bxb squares, 

respectively, with either of the Renyi and Solomon mechanisms» 

The abacus model consists of a rectangle, (k+l)xxs of k horizontal 

lines, each one unit apart.  The width of the rectangle (the length of 

each line) is x.  Assume a, b are integers.  A line is chosen uniformly 

at random from the integers {1,2,..» j,k} , and centered on this line, an 

aXa (for definiteness) square Is placed.  Next, a bxb square is selected 

and placed uniformly on a line, and parked if there is no overlap.  If 

there is overlap with the aXa parked car on a given line (Renyi model) 

or if a car to be placed is vertically adjacent to some portion of a car, 

without a line of space between ears, the bxb car is placed I.I.D. as 

before until it is parked. Then another aXa car is placed I.I.D. and the 

process continues until no further cars may be parked»  The Solomon,model 

allows that if two cars overlap on the same line, the one to be placed may 

be moved adjacent horizontally (minimal motion) to the already-parked car 

and parked if there is now no overlap with another parked car, if the 

boundary is not overlappeds  and if at least one line of vertical space 

exists between the car and already-parked cars on other lines» 

The random car size model to be considered has DXD square cars to 

be parked» either on a rectangle or abacus with the Renyi mechanism, where 

D is chosen from a distribution F, with density £(x) > 0, all x > 0. 

If a DXD car fits the boundaries of the given rectangle and does not overlap 

another already-parked car, (and leaves enough vertical space in the abacus 



grid case), it is parked, otherwise it is discarded and the process stops. 

If the car is parked, another D is chosen I.I.D. from F and a DXD car 

is placed I.I.D. as the other cars, and if it is not parked as described 

above, the process stops. 

2.  One-Dimensional Models. Define, for a, b « x, 

(2.1)    X (x)  (X, (x)) = the random variable of total number of cars 

which may be parked on a curb of length x in the alternating 

a and b length car Solomon model, starting with an a-car . 

(b-car) 

K (x) • E(X (x)) 

K^x) B ECXj^x)). 

By considerations as in (Solomon (1966)), it may be shown that 

Define 

(2.3) L (s) -  r e"SXK  (x) 
J0 a 

dx 

that for some constants 

1^(8) - J e"SXKb(x) dx 

ß,, ß2» 6j» 6_ which can be determined, for s I  0 



(2,4) L (s) ~ ß.s'2 + 6.8."1 

-2     -1 
LjjCs) ~ ß2

8  + 62S 

Let 

(2.5)                   £  (x) = ß,x + 6. 
a rl    J 

i, (x) = ß_x + 6, 

It may be shown that £(x) satisfies the same integral equation- as 

Ka(3 

(2.6)    Xa(x+a) - Xa(x+a) - (Xb(^)-Xb(x))jCI(.a0)u(x >x+a)] 

- r Ka(x) N 
£(x) = V. v (x) J' Heoce 

+ [(xjctr-j^ct)) + <xj;(x-t)-£1)(x-t))3 

and a similar equation for- X,(x-fb) - jL(x+b), where the a, b are inter- 

changed, where t is chosen uniformly on [0,x], X'(t), X"(t) are I.I.D. 
3.       & 

as X (t), conditional on t.  Squaring both sides of (2.6) and taking 

(2) 2 
expectations, with *£ ^(x) E E(X (X)-£ (x)) , 

(2.7)     „«>(*«) - J- M<«Cx) + _*_ r»<«(t) dt 

and 



X X 

M^2)(x+b)  = -||r M(2)(x)  + —|r   f M(2)(t)   dt + —f-   [ m   (t)m   (x-t)   dt, 
b     v x+2b    a x+2b j -. a >:+2b J n a a 

where 

(2-8) m   (t)  = E(X   (t)-X   (t)), 
3 a a. 

°b 
(t)  =  E(X,(t) -jj   (t)) 

Define 

(2.9) L  (s)  H   I* e~SV2)(x)   dx 
a 

r  -sx„(2) vs)4e'T« jb 
dx 

r   (s) a   f     e"SXm  (t) dx 
a «I a      . a 

C3 

, s    r    -sb   , x , r   (s) a J     e      n^Qx) QX 

b 

L   (s)' a 
L 

" Vs) 

Taking Laplace  transforms   in   (2.7),   one obtains 

(2.10) L*   + AL   =   - B 

v.iere 

-a,   2ae 

A = 

.v   -sb   .   2e-£b       . /-be -f  ,   -b 



_        ,_     -as   _     -2as.        ,   -as     -2as. 
2e  

sa
r
2 + 12ae -JSae \ +   (e       -e 1 

v   o        ,o,    -bs   ,.,    -2bs. ,   -bs     -2bs. „  -sb  2       (2be       -3be )   ,    (e       -e ) 
2e      r    + -*— *- +     ~  as / 

s 

Define 

K  (x)(K  (x)) = mean total number of a-length (b-length) 
J-3.       X D 

(2.11) 

cars which can be parked on [0,x). 

Assume  a < b. 

Clearly 

(2.12) Klb(x) < Ka(x),Kb(x) < Kla(x) 

and a similar inequality holds for the respective non-normalized second 

moments. 

Hence we seek a solution, either by power series, or Volterra-like 

integral equation representation to (2.10) such that 

(2.13) lim s (L.(s) = a.  > 0,    i=l,2. 
s 1 0   x X 

(2)     (2) 
Hence M    (x) ,M,   (x) are respectively expressible as a sum of three 

terms, each of which is increasing in absolute value.  By Abelian, Tauberian 

theorems (Widder (1946), p. 182 and p. 192), 

(2.14) '.   -l^Ma2)(xN   ,.   -ir
VarXa(*S lim x  !  . .    ) = lim x  ( ! 

x->»    VM^ ;(x)y   x-»»    VVar Xb(x)
y e~) 



For the abacus, define 

(2.15)   Y (k) = total number of alternately-placed  a  and b  segments 
EL 

on a  k-line   one-dimensional  abacus   starting with  an    a 

segment. 

Y, (k)   is   the   similar  quantity  starting with  a    b     segment. 

One may conclude by  similar considerations  as  in   (Solomon   (1966)) 

that 

<2 -16) ^ Y„(k)y ~ W(k)J =    ^k> 

for large k,  where I   (k), £b(k) are linear functions of  k. 

Denoting 

(2.17) Mf2)(k) = E(Y(k)-i (k))2 

M^2)(k) = E(Yb(k)-Xb(k))
2 

(k)   - E(Y (k)-X (k)) 
, 3.       3. 

rn^k)  = E(Yb(k)-Xb(k)) 

.t follows that with  k an integer, k » a or b. 

(2.18)     KU:>(k+a) = {    Y.  mh(X)mh(k-£) + r £ M^ ' (X) 

M^2)(k+b) = £ E m (X)m (k-X) + | ^ M*2)(*> "b k XJ=1 a   a       K ^ a 



Similar considerations to those above yield 

Var Y (k) 
(2.19) lim k V )   = 1>  °- 

k-*»     Var Y, (k)' 
b 

For the random car size model in one dimension, define 

(2.20)    Z(x) = total number of cars of length  D,  where D has 

distribution F,  density  f,  which may be parked 

on a curb of length  x . 

Define 

(2.21) M(x) = E Z(x) 

L(s) = j e~SXK(x) dx 

CO 

r   -sx 
cp(s) = j e  f(x) dx. 



It may be shown with the prior model that for  s i 0, a v, X 

may be computed which satisfy, for  s 1 0, 

-2    -1 
(2.22) L(s) ~ vs  + Xs  . 

Define, for x > 0 

(2.23) £(x)   - vx + X 

m(x) =  = M(x) - £(x) 

M(2)(x) = E(Z(x)-£(x))2 

By the methods of earlier paragraphs, it follows that, 

for a > 0, 

(2.24) M(2)<a) = Tr f(x) dx  fa XM(2)(t)  dt 
aLJ0 J0 

pa ra-x i 
+   \   £(x)  dx   j        m(t)m(a-x-t)   dt I 

If E(D  ) < oo,  it  follows  that 

(2.25) lim   x"V2)(x)  = ß > 0. 
X->oo 



3.   Higher Moments. 

Let 

(3.1) X(x) = total number of unit length segments (cars) which may 

be parked on [0,x) in accord with a Renyi model, where each unit segment 

is placed uniformly at random and parked only if it does not overlap a 

previously parked car.  See (Solomon (1966)). 

It may be shown (Solomon (1966)) that for x-»a> 

(3.2) EX(x) = m(x) ~ I (x) =  ex + c - 1 

where c ~ .748. 

Define, for n > 1 

(3.3) M(n)(x) =  E(X(x) -4(x))n, 

and M^(x) s m(x) 

It is known that (Solomon (1966)) 

(3.4)        lim x-1M(2)(x) = lim x-1Var X(x) = a >  0. 
X-» co X-> oo 

Define 

(3.5) X!(x), X"(x)  to be I.I.D.  as  X(x), 

10 



11 

Theorem 1. 

-n (In),   .   (2n)l  2n 
(3.6) lim x V  '(x) = -*-—^- a 

x - » 2 nl 

-(2n+l)/2(2iH-l), .   . 
and lim x v   '  M     (x) = 0 

x -. co 

Proof.  Conditional on the placement of the first unit car on 

(t,t+l),  x>t+l>t>0, considerations of (Weiner (1978)) yield 

that for asymptotic results, 

(3.7)  E(X(x+l) -X(x+l))n » E([X'(t) -l(t)] + [X"(x-t) -X(x-t)])n, 

where  t  is chosen uniformly on [0,x],  Expanding the right side by the 

binomial expansion and taking expectations for n = 3 yields 

(3.8)    M(3)(x+1) = 6x_1 f M(2)(t)m(x-t) + - \  M(3)(t) dt 

and taking Laplace transforms, with 

(3.5) L(D)(s) = eS fe-£XM(n)(x) dx, 
"0 

(n) (s) = jV£XM(n)(x) dx, 

it follows that 

(3.10)      (L(3)(s))' + -— L(3)(s) = -6R(2)(s)R(1)(s) s 

11 



with solution 

oo  _u oo   -u 

(3.11)L(3)(s)   =  [exI(2J    V du)II [eX<-2I    VdU)I6R(2)^R(1)(v)]dV^ 

Since for 0 < x < 1, 

(3.12) 
CD    -I! 

r r   e      -\ £XPV2J  ~u~ dV = _2Y - 2 £n s + g(E), 
s 

where y  = Euler's constant and g(s) —  0 as s — 0, 

(3.13) lim s2R(2)(s) = a2 

s i 0 

lim s2R(1)(s) = 0, 
s I   0 

it follows that 

(3.14)       lim s2L(3)(s) 
s   J   0 

co co       —u 

J [exp^F    ^- du-2-y) [6R(2) (v)R(1)(v)Jdv =  constant. 
0 v 

For n = 4, 

(3.15) M(4)(x+1)  =   (Sx"1   rM(2)(t)M(2)(x-t)   dt + q(x) 
Z J0 

+ ^rXM(4)(t)dt 
X "0 

where 

(3.16)  q(x) is of lower order of  x  than x"1 f M(2)(t)M(2)(x-t) dt 

by the results for n=l,2,3. 

12 



(A) 
Again taking Laplace transforms, the resulting equation for L   (s) 

has solution 

co      -u 

(3.17)     L(4)(s)   = [exp^J    ^- du)][J [exp(-2j    ^- du)Je (R(2)(v))2+t(v)] dv 

where t(v) is the Laplace transform of q(x). 

Since 

(3.18) lim v2R(2)(v) = a2 

v i 0 

lim v t(v) = 0, 
v i  0 

if  one  denotes 

CD CO —y rt 

(3.19) f(s)  = J" [exp(-2j    ^- du)j6(R(2)(v))     +  t(v)j dv, 
S V 

it   follows  by   (3.18) and    L'Hospital's   rule   that 

(3. 20, lim sf(s) 
s I   0 

f (s) = 6a e '. 

s=0 

Ey (3.18), (3.20) 

(3.21) lun s L  (s) = 60/ . 

,(4) 

s 1 0 

Since KK~T/' (x) is expressible as a sum of terms each increasing in absolute 

value, a Tauberian theoren (Widder (1946)) yields 

(3.22) lim x~2M(A)(x) = 3cy4. 
x  _ CD 

13 



th Assume   the   result   of   the   theorem  for  r=l,2,...,2n       moments  by 

induction.     By   the  binomial   expansion, 

(3.23) M<2n+1>(x+l)   = I   f     zn(2nt1)H(£)(t)M(2^1-£>(x-t)   dt 
X J0 2=1  X 

2 rXM(2n+l)(t) dfc> 

x JQ 

In the first integral on the right side, if M   (t) is an even moments 

and the induction hypothesis yields that 

(3.24)       M(£)(t)M(2rtfl-£>(x-t) < 0(t£/2(x-t)2n-£/2) < 0(xn), 

and when Laplace transforms are taken in (3.19), then a simple computation 

by L'Hospital's rule, and an Abelian and Tauberian theorem using (3.20) 

yields that 

(3.2 5) M(2m"1)(x) < 0(xn). 

This   suffices   for  the   odd moments. 

For  the   (2n+2)       moment,   the  binomial  expansion yields 

(3.26) M(2n+2)(x+l)  = I   f   :£   (2^2)M<2*>(t)M(2l*-2-2*Vt)   dt 
X J0  £=1     ZX 

2   rx   (2rri-2),   .   _, 
+ -   ;   MV '(t)   dt  +  q(x), 

X   »Q 

where  q(x)   is   the   sum  of   terras  which   are  multiples   of  convolutions   of  odd moiDents, 

and  are   of   lcr.er   order   than   the   first   term  on   the   right  side   of   (3.22)  by  induction 

14 



Multiplying by x and taking Laplace transforms one obtains an 

equation with solution 

(3.27,     «.<***><., . [ex<2f V *")] f[<4 V -)] 
S S V 

r- n „   .2n+2.   (2£).   .    (2n+2-2jJ).   .   ,      .     ' 
£  (  0     )RK     /(v)Rv '(v) + t(v) dv 

where t(v) is the Laplace transform of q(x)„ 

Let 

=>  -U 

(3.28)  f(s) = J [exp(-2j ^- du)T E (^ )R(2*> (v)R<2l*2-2X> (v) + t(v) 
S       V i=l 

dv. 

Then by   (3.12),   L'Hospital's  rule,  and  the  induction hypothesis, 

(3.29) lim s  f(x) 
s   i  0 

lim       ^M 
s   1  0     (—) 

n' 
s 

n j&=1 *  21 
l/1 

.1 
1    "    2n+2     (2£)!a _  .   (2n+2-2£) Icr    ' ~ ""    2y 

,   2n+2-2£ 

,n+l-X 

Hence,  by   (3.12),   (3.29), 

(3.30) lim s^2L(2n+2)(s)  = i    £  (2f2)  -^^  - l2^2^^^^ 
s   i  0 n X=l       X 2£ 2n+l-i- 

By a Tauberian theorem, 

(3.31) lim x 
X    -•    CD 

-(nfl)M(2^2)(       = 1 °   ,2n+2.    f2/V.o2£f2n+2-2£)la2m-2-2£ 

(n+l)ln  ^C   2i   ; 2X       2n+l-£ 

(2n+2):o;2n+2 

2n+1(m-l)l 



and the theorem is proved. 

It is clear by the nature of the computations that the moment result 

holds for the three models with either the Renyi or Solomon parking 

mechanism. 

Theorem 2.  For any one-dimensional model considered, for either 

the Renyi or Solomon parking mechanisms, where c, a  are specific to 

each case, 

(3.22) lim E[^-J*&ZJ&-\
>

)      lim ELX/-J^^X) = e'^2   . 

2 
Proof.  The limiting moments of Theorem 1 are those of a N(0,a ) 

random variable, which uniquely determine the normal law. 

4.  Two Dimensions. 

Let 

(4.1)    R(x,y) = total number of unit squares which may be parked on an 

xx y rectangle in the Renyi model in two dimensions. 

Lemma.  For x,y-»co,  all n > 1 

(4.2)(i)  E(X(x)X(y) -X(x)X(y))2n~ (^^) (cff)
2n(xy)n(x+ y)n 

n + - 
(4.2)(ii) E(X(x)Y(y) -X(x)i(y))2ttfl~ o((xy)(x+y))  2 

with Y(y) I.I.D. as X(y). 

16 



Proof.   For x,y large, all  n , 

(4.3) n 
E[Y(y)(X(x) -X(x)) + 4(x)(Y(y) -X(y))] . 

The independence of X(x),Y(y), the asymptotic expressions 

(4.4)(i)   £(x) ~ ex 

(4.4)(ii)  E(Y(y))n = E[(Y(y)-i(y))+£(y)]n^ OKy^-cV- 

a binomial expansion of (4.3), Theorem 1,    an explicit asymptotic 

computation of (4.2) (i) for n=l,2, (4.2)(ii)  for n=l, and an induction 

establish the lemma. 

(4.5) lim E s exp 
x,y-»eo V v/E(R(x,y) -X(x)i(y))

2 

". .{-.[-<-^£!5)]} -u2/2 

x,y-»eo 2 2 
c a xy(x+y) 

Proof.  For x,y-»os, n > 1, 

(4.6)  E(R(x,y) - • & (x)£ (y))" ~ E[(Y(y)(X(x) -£(x)) + U(x)(Y(y) -i(y)))]n. 

17 



The   lemma  immediately yields  that   for x,y-»co,   and   (4.6),   that 

(4.7)(i) E(R(xy)-X(x)i(y))
2n    ^XZniL all    n >  lf 

(ca)     [xy(x+y)]n 2V 

(4.7)(ii) E(R(x,y)-X(x)i(y))2n+1    _^Q> &n    n > Q> 

n+i. 
[xy(x+y)J        2 

The right sides of (4.7)(i), (4.7)(ii) are the 2nth and (2n+l)St 

moments of a N(0,1) random variable, which determine the distribution, 

proving the theorem. 

Similar results hold for the Solomon model and other models con- 

sidered earlier. A bivariate central limit theorem holds for alternating 

squares or rectangles models. 

18 
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